VEHICLE INVESTIGATION SYSTEM

ABSTRACT:-

This project is totally deals with the registration of vehicles as well as finding stolen vehicles using the registration number date. Before searching for the stolen vehicles the vehicle owner should register the stolen vehicle details. And it gives the information of your vehicle registration if you forget the registration number. This also facilitates the buying the second hand vehicles, before buying it will check the status of the vehicle, also changes the owner of the vehicle.

PROPOSED SYSTEM:-

IVIS will receive data from the information subsystems and the vehicle; and it will send data to the information subsystems. This function will determine what information IVIS will use to perform its information management functions, before presenting it to the driver. When the driver has requests, or wishes to respond to a message from one of the subsystems, this function will provide the means of communicating with the various information sources.

RECEIVE DATA:

The system will receive data from the information subsystems, the vehicle, and sensors regarding: message content, message urgency, message timing, vehicle state, and ambient conditions. Message content information will be received regarding: routing information (e.g., guidance, destination, and distance), vehicle location, responses to calls for help, responses to requests for reservations, hazards, weather conditions, road surface conditions, traffic conditions, roadway signs and signals, collision warnings, and advisories.

Determination of message content and applicability will be made by the separate information subsystems. Message urgency information will be used to determine the dynamic salience of the display. If the system displays a message requiring the driver to stop the vehicle (e.g., a stop sign or impending collision), and senses that the driver is not responding, then it would increase the attention getting nature of the display. Determination of message urgency will be made by the separate information subsystems.
Message timing information will be used to determine the onset and duration of a displayed message. Accurate timing of the message is necessary to ensure that the driver receives the information when it is needed, for the entire time that it is needed, and only when it is needed. Determination of message timing will be made by the separate information subsystems. Vehicle state information will be received regarding: vehicle type, weight, speed, relevant driver inputs (e.g., brakes, accelerator, steering, turn indicators), and status (e.g., fuel).

Vehicle information will be needed, for example, for the system to monitor the driver's responses to critical messages. Ambient conditions information will be received regarding ambient light and sound conditions. This information will be used to optimize the display. Subsystem state information will be received from each subsystem regarding its: presence, type, level of sophistication, and the types of data it will provide. This information will be used to configure the information management logic, in order to accommodate a diverse number and types of subsystems.

1.2 Send Data:

The system will send data to the information subsystems regarding: driver goals, driver preferences, driver requests, and driver acknowledgments and acceptances. Driver goals information will be sent regarding the driver's desired: destination(s), route name or type, service, or interests. Information on the driver's preferences will concern the driver's preferred: route(s) or information filter settings.

Driver's requests sent to the information subsystems will cover: help (tow, police, ambulance), destination information, routing, and reservations. For drivers receiving requests or instructions from dispatchers (e.g., route deviation, on-demand routing and pick-up), IVIS will have to send messages from the driver acknowledging the receipt of the dispatcher's message and indicating the driver's acceptance of the request.
SYSTEM SPECIFICATION:

SOFTWARE SPECIFICATIONS

Operating System : Windows 98/NT.
Front End : Java
Back End : SQL server 2005

HARDWARE SPECIFICATIONS

Main Memory : 64MB.
MicroProcessor : Pentium –III.
Hard Disk Drive : 4.3 GB.
Cache Memory : 512KB.